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Mechanics of Solids – Strain Energy Methods Notes 

 

Learning Summary 

1. Know the basic concept of strain energy stored in a material body under loading (knowledge); 

2. Be able to calculate strain energy in an elastic body/structure arising from various types of loading, including 
tension/compression, bending and torsion (application); 

3. Be able to apply Castigliano’s theorem to linear elastic bodies in order to enable the deflection, change of slope 
and/or rotation of a body, or structure, to be calculated from strain energy expressions (application). 

 

1. Introduction 

We have seen in the Deflection of Beams topic how deflections and slopes of a beam can be determined by solving 
the differential equation of the elastic line, i.e., Macaulay’s method. However, this method is not appropriate for more 
complex shaped structures or bodies where deflections occur. Here we introduce the concept of strain energy, which 
will enable us to calculate deflections of complex structures.  

When a material is subject to loading, strain energy is stored within it. An Italian railway engineer, named Castigliano, 
derived a theorem and procedure for using this strain energy to determine deflections in structures or bodies. 
Castigliano’s theorem is a powerful and flexible method for solving deflection problems. 

 

2. Strain Energy Definition 

The strain energy in a material body is equal to the work done on the body by the applied loads. Thus, if an elastic-
plastic material body is subjected to a single axial load, 𝑃, as shown in Figure 1(a), causing a displacement, 𝑢, at the 
load application point, according to the behaviour shown in Figure 1(b), then the strain energy, 𝑈, is given as: 

 𝑈 = %𝑃d𝑢
!

"

 (1) 
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Figure 1 

 

Similar expressions can be derived for bending of a beam and torsion of a bar, according to Figures 2 and 3, 
respectively, as: 

 𝑈 = %𝑀d𝜙

#

"

 (2) 

and 

 𝑈 = %𝑇d𝜃
$

"

 (3) 

where 𝜙 is the resulting change in slope in a beam due to applied bending moment, 𝑀, and 𝜃 is the resulting twist of 
a bar due to applied torque, 𝑇. 

 

 

Figure 2 

 

(a)

!

"

(b)

!

"

(a)

!

"

#
#

(b)

#

!
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Figure 3 

 

3. Application to Elastic Material Behaviour  

Axially Loaded Beam 

If the material body shown in Figure 1(a) behaves linear elastically, as shown in Figure 4, it can be seen that the work 
done, or strain energy, given by equation (1) can be simplified to: 

𝑈 =
1
2
𝑃𝑢 

 

 

Figure 4 

 

If this material body in Figure 1(a) represents an element, of length 𝛿𝑠, of a larger beam, of length 𝐿, and the change 
in length of this element due to the applied load, 𝑃, is 𝛿𝑢, then the strain energy within this element is:  

 𝛿𝑈 =
1
2
𝑃𝛿𝑢 (4) 

 

It is important to note that there are transverse strains/displacements due to Poisson’s effects but there are no 
transverse stresses/loads. Thus, there is no work done in the transverse direction. 

 

Axial strain in the element is:  

 𝜀 =
𝛿𝑢
𝛿𝑠

 (5) 

and as the material behaves linear elastically, Hooke’s law applies. Therefore: 

(a)

!

!

"

(b)

!

"

!

"
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 𝜀 =
𝜎
𝐸

 (6) 

 

Substituting equation (6) into equation (5) gives: 

𝛿𝑢
𝛿𝑠

=
𝜎
𝐸
=

𝑃
𝐸𝐴

 

 ∴ 𝛿𝑢 =
𝑃
𝐸𝐴

𝛿𝑠 (7) 

 

Substituting equation (7) into equation (4): 

𝛿𝑈 =
𝑃%

2𝐸𝐴
𝛿𝑠 

 

As this is the expression for strain energy in the element of beam 𝛿𝑠, integrating this expression over the full length of 
the beam, in order to give the total strain energy in the beam: 

 𝑼 = %
𝑷𝟐

𝟐𝑬𝑨

𝑳

𝟎

𝜹𝒔 (8) 

 

Bending of a Beam 

If the material body shown in Figure 2(a) behaves linear elastically, as shown in Figure 5, it can be seen that the work 
done, or strain energy, given by equation (2) can be simplified to: 

𝑈 =
1
2
𝑀𝜙 

 

 

Figure 5 

 

If this material body in Figure 2(a) represents an element, of length 𝛿𝑠, of a larger beam, of length 𝐿, which bends to 
curvature 𝑅, giving a change in slope of this element due to the applied bending moment 𝑀, of 𝑑𝜙, then strain energy 
within this element is:  

!

"
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 𝛿𝑈 =
1
2
𝑀𝛿𝜙 (9) 

 

From the elastic beam bending equation: 

 
𝑀
𝐼
=
𝐸
𝑅

 (10) 

and as the angle subtended by the element is equal to the change in slope, the expression for the arc created by the 
element is:  

 𝛿𝑠 = 𝑅𝛿𝜙 (11) 

 

Rearranging equation (11) and substituting into equation (10) gives: 

𝑀
𝐼
=

𝐸
𝛿𝑠
𝛿𝜙

 

 ∴ 𝛿𝜙 =
𝑀
𝐸𝐼
𝛿𝑠 (12) 

 

Substituting equation (12) into equation (9): 

𝛿𝑈 =
𝑀%

2𝐸𝐼
𝛿𝑠 

 

As this is the expression for strain energy in the element of beam 𝛿𝑠, integrating this expression over the full length of 
the beam, in order to give the total strain energy in the beam: 

 𝑼 = %
𝑴𝟐

𝟐𝑬𝑰

𝑳

𝟎

𝜹𝒔 (13) 

 

Torsion of a Shaft 

If the material body shown in Figure 3(a) behaves linear elastically, as shown in Figure 6, it can be seen that the work 
done, or strain energy, given by equation (3) can be simplified to: 

𝑈 =
1
2
𝑇𝜃 
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Figure 6 

 

If this material body in Figure 3(a) represents an element, of length 𝛿𝑠, of a larger beam, of length 𝐿, and the twist of 
this element due to the applied torque, 𝑇, is 𝛿𝜃, then the strain energy within this element is: 

 𝛿𝑈 =
1
2
𝑇𝛿𝜃 (14) 

 

From the elastic torsional equation: 

𝑇
𝐽
=
𝐺𝜃
𝐿

 

therefore, for the element, 𝛿𝑠, this can be rewritten as: 

𝑇
𝐽
=
𝐺𝛿𝜃
𝛿𝑠

 

 ∴ 𝛿𝜃 =
𝑇
𝐺𝐽
𝛿𝑠 (15) 

 

Substituting equation (15) into equation (14) gives: 

𝛿𝑈 =
𝑇%

2𝐺𝐽
𝛿𝑠 

 

As this is the expression for strain energy in the element of beam 𝛿𝑠, integrating this expression over the full length of 
the beam, in order to give the total strain energy in the beam: 

 𝑼 = %
𝑻𝟐

𝟐𝑮𝑱

𝑳

𝟎

𝜹𝒔 (16) 

 

Equations (8), (13) and (16) therefore summarise the strain energy expressions for elastic bodies for axial, bending and 
torsional loading types, respectively. In practical engineering structures, where members are relatively long and 
slender, strain energy due to axial loading can usually be neglected with bending usually being dominant. Strain energy 
due to shear deflections can also exist but, again, can normally be neglected. 

 

!

"
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4. Castigliano’s Theorem 

Consider a linear elastic body loaded by a force, 𝑃), as shown in Figure 7(a), noting that it may be the case that 𝑖 ≠ 1, 
i.e.  there may be more than one force acting on the body. The corresponding displacement at the location, and in the 
direction of 𝑃), is 𝑢). 

 

 

Figure 7 

 

As discussed in section 2, the general expression for strain energy, shown as the area under the load-displacement 
plot shown in Figure 7(b), is: 

𝑈) = % 𝑃)d𝑢)

!!

"

 

 

We can also define the complimentary strain energy, 𝑈)∗, as: 

𝑈)∗ = % 𝑢)d𝑃)

+!

"

 

where 𝑈)∗ is the area above the load-displacement plot. 

 

Now, consider a small increment of the load Δ𝑃), while any other loads (assuming 𝑖 ≠ 1), remain constant. This causes 
an increment of the complementary strain energy, shown in Figure 7(c) as: 

Δ𝑈)∗ = % 𝑢)d𝑃)

+!,-+!

+!

≈ 𝑢)Δ𝑃)  

∴ 𝑢) =
Δ𝑈)∗

Δ𝑃)
 

 

In the limit, as Δ𝑃) → 0, the above expression can be rewritten as: 

(a)

!! "!

(b)

!!

"!
#!

#!∗

(c)

!!

"!

Δ#!

Δ#!∗Δ!!

Δ"!
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 ∴ 𝑢) =
∂𝑈)∗

∂𝑃)
 (17) 

 

Note that this is a partial derivative as, if 𝑖 ≠ 1, then all loads except 𝑃)  were kept constant in the derivation of equation 
(17), I.e., 𝑢)  is the deflection at the point of application of, and in the direction of, the load, 𝑃), and 𝑃)  is independent 
of other loads. 

 

Equation (17) is the general form of Castigliano’s Theorem, which, as stated in the introduction, is named after the 
Italian railway engineer, Carlo Alberto Castigliano (1847-1884), who developed the method. His theorem states that 
the deflection, 𝑢), at the location of a given load point, 𝑃), may be obtained by differentiating the complementary 
strain energy, 𝑈)∗, with respect to the load, 𝑃), acting at that point. 

 

Equation (17) applies to any elastic body (linear or non-linear). For linear elastic bodies specifically, however, the strain 
energy is equal to the complementary strain energy as shown in Figure 7(b). Thus, 

𝑈) = 𝑈)∗ 

And therefore, 

 𝑢) =
∂𝑈)
∂𝑃)

 (18) 

 

Equation (18) is the well-known form of Castigliano’s Theorem and states that the partial derivative of the strain 
energy, 𝑈), of a linear elastic system with respect to a specific independent force, 𝑃), is equal to the displacement of 
the structure at the point of application, and in the direction of, the 𝑃). 

 

Castigliano’s theorem may be also be used for the calculation of the change in slope of a beam, 𝜙), at the location of 
a specific and independent bending moment, 𝑀), and to the calculation of the rotation of a bar, 𝜃), subjected to a 
specific and independent torque, 𝑇), as follows, 

𝜙) =
∂𝑈)
∂𝑀)

 

and 

𝜃) =
∂𝑈)
∂𝑇)

 

 

5. Worked Example – Combined Strain Energy Example 

The bent uniform bar, shown in Figure 8, has a circular cross-section of 40	mm diameter and is subjected to a vertical 
load, 𝑃, of 16	kN at one end and is clamped at the other. 

 



  
9 

 

Figure 8 

 

Use strain energy to determine the vertical deflection at the position of the applied load. 

Assume 𝐸 = 225	GPa, 𝐿 = 0.75	m and 𝜃 = 55°. 

 

Second Moment of Area, 𝐼, calculation: 

Beam cross-section 

 

∴ 𝐼 =
𝜋𝐷.

64
=
𝜋 × 40.

64
= 125,663.71	mm. 

 

Labelling the structure: 

 

 

!

"

#

	"

!

"

!

#
B C

A
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Section AB (bending only) 

Free Body Diagram: 

 

 

Taking moments about X-X: 

𝑀/0 = 𝑃𝑎 = 𝑃𝑠cos𝜃 

 

Substituting this into the equation for strain energy in a beam under bending gives, 

𝑈/0 = %
𝑀/0%

2𝐸𝐼
d𝑠 = %

(𝑃𝑠cos𝜃)%

2𝐸𝐼
d𝑠

1

"

=
(𝑃cos𝜃)%

2𝐸𝐼
%𝑠%d𝑠
1

"

=
(𝑃cos𝜃)%

2𝐸𝐼
e
𝑠2

3
f
"

1

 

∴ 𝑈/0 =
𝑃%𝐿2

6𝐸𝐼
cos% 𝜃 

 

Section BC (bending only) 

Free Body Diagram: 

 

 

!

	# A

X

X!!"
"

$

%

!

"

#
B

A

Y

Y

!!"

"

$

%
	'
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Taking moments about Y-Y: 

𝑀03 = 𝑃𝑐 = 𝑃(𝑠 − 𝐿cos𝜃) 

 

Substituting this into the equation for Strain Energy in a beam under bending gives, 

𝑈03 = %
𝑀03

%

2𝐸𝐼
d𝑠 = %

i𝑃(𝑠 − 𝐿cos𝜃)j%

2𝐸𝐼
d𝑠

1

"

=
𝑃%

2𝐸𝐼
%(𝑠% − 2𝐿𝑠cos𝜃 + 𝐿%cos%𝜃)d𝑠
1

"

 

=
𝑃%

2𝐸𝐼
e
𝑠2

3
− 𝐿𝑠%cos𝜃 + 𝐿%𝑠cos%𝜃f

"

1

 

∴ 𝑈03 =
𝑃%𝐿2

2𝐸𝐼 l
1
3
− cos𝜃 + cos%𝜃m 

 

Total Strain Energy: 

𝑈 = 𝑈/0 + 𝑈03 =
𝑃%𝐿2

6𝐸𝐼
cos% 𝜃 +

𝑃%𝐿2

2𝐸𝐼 l
1
3
− cos𝜃 + cos%𝜃m 

∴ 𝑈 =
𝑃%𝐿2

2𝐸𝐼
n
4 cos% 𝜃

3
− cos𝜃 +

1
3
o 

 

Differentiating this with respect to the applied load, 𝑃, in order to calculate vertical deflection at position A, 𝑢4": 

𝑢4" =
𝜕𝑈
𝜕𝑃

=
𝑃𝐿2

𝐸𝐼
n
4 cos% 𝜃

3
− cos𝜃 +

1
3
o 

 

Substituting values for 𝑃, 𝐿, 𝐸, 𝐼 and 𝜃 into this gives: 

𝒖𝒗𝑨 = 𝟒𝟕. 𝟑𝟔	𝐦𝐦 

 

6. Dummy Loads  

In order to determine the deflection, change of slope or rotation at a point in a structure where a load, bending 
moment or torque is not applied, a dummy load, bending moment or torque is added at the point of and in the 
direction that the deflection, change of slope or rotation is required. The expression for strain energy is then obtained 
as shown in the previous sections, but incorporating the dummy load, bending moment or torque, and differentiated 
with respect to this dummy load, bending moment or torque in order to obtain the required deflection, change of 
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slope or rotation. The dummy load, bending moment or torque is then set to zero when numerically evaluating the 
deflection, change of slope or rotation (i.e., after the differentiation).  

 

For example, to determine the horizontal deflection at the tip of the structure shown in Figure 8, it is necessary to add 
a horizontal dummy load, 𝑄, at this position, as shown in Figure 9. 

 

 

Figure 9 

 

For this structure the total strain energy expression can be calculated as: 

 

∴ 𝑈 =
𝐿2

6𝐸𝐼
(𝑃%cos%𝜃 + 𝑄%sin%𝜃 + 𝑃𝑄cos𝜃sin𝜃) 

+
𝐿2

2𝐸𝐼
n
𝑃%

3
− 𝑃%cos𝜃 + 𝑃%cos%𝜃 − 𝑃𝑄sin𝜃 + 𝑄%sin%𝜃 + 2𝑃𝑄cos𝜃sin𝜃o 

(19) 

 

The vertical deflection of the tip of the beam can be calculated by differentiating equation (19) with respect to the 
vertical applied load, 𝑃, as: 

𝑢4" =
𝜕𝑈
𝜕𝑃

=
𝐿2

6𝐸𝐼
(2𝑃cos%𝜃 + 𝑄cos𝜃sin𝜃) +

𝐿2

2𝐸𝐼 l
2𝑃
3
− 2𝑃cos𝜃 + 2𝑃cos%𝜃 − 𝑄sin𝜃 + 2𝑄cos𝜃sin𝜃m 

 

Setting dummy load to zero and substituting values for 𝑃, 𝐿, 𝐸, 𝐼 and 𝜃 into this gives: 

𝒖𝒗𝑨 = 𝟒𝟕. 𝟑𝟖	𝐦𝐦 

 

This is as calculated in section 5; hence it can be seen that the addition of the horizontal dummy load has not affected 
the calculated vertical deflection.  

!

"

!

#

$
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Differentiating equation (19) with respect to the dummy load, 𝑄, in order to calculate the horizontal deflection at the 
tip of the beam, gives: 

𝑢6" =
𝜕𝑈
𝜕𝑄

=
𝐿2

6𝐸𝐼
(2𝑄sin%𝜃 + 𝑃cos𝜃sin𝜃) +

𝐿2

2𝐸𝐼
(−𝑃sin𝜃 + 2𝑄sin%𝜃 + 2𝑃cos𝜃sin𝜃) 

 

Setting dummy load to zero and substituting values for 𝑃, 𝐿, 𝐸, 𝐼 and 𝜃 into this gives: 

∴ 𝒖𝒉𝑨 = 𝟑𝟑. 𝟎𝟗	𝐦𝐦 

 

The tip of the beam therefore deflects downwards by 47.38	mm and to the right by 33.09	mm, due to the applied 
load, 𝑃. 

 

 

 

 

 

 


